Rotational Rectification Network: Enabling Pedestrian Detection for Mobile Vision
نویسندگان
چکیده
Across a majority of pedestrian detection datasets, it is typically assumed that pedestrians will be standing upright with respect to the image coordinate system. This assumption however, is not always valid for many visionequipped mobile platforms such as mobile phones, UAVs or construction vehicles on rugged terrain. In these situations, the motion of the camera can cause images of pedestrians to be captured at extreme angles. This can lead to very poor pedestrian detection performance when using standard pedestrian detectors. To address this issue, we propose a Rotational Rectification Network (R2N) that can be inserted into any CNN-based pedestrian (or object) detector to adapt it to significant changes in camera rotation. The rotational rectification network uses a 2D rotation estimation module that passes rotational information to a spatial transformer network [12] to undistort image features. To enable robust rotation estimation, we propose a Global Polar Pooling (GP-Pooling) operator to capture rotational shifts in convolutional features. Through our experiments, we show how our rotational rectification network can be used to improve the performance of the state-of-the-art pedestrian detector under heavy image rotation by up to 45%.
منابع مشابه
An Intelligent Vision System on a Mobile Manipulator
This article will introduce a robust vision system which was implemented on a mobile manipulator. This robot has to find objects and deliver them to pre specified locations. In the first stage, a method which is named color adjacency method was employed. However, this method needs a large amount of memory and the process is very slow on computers with small memories. Therefore since the previou...
متن کاملCombination of Fixed and Mobile Cameras for Automatic Pedestrian Detection
Pedestrian detection in the surroundings of a vehicle is highly desirable to avoid dangerous traffic situations. Typical vision-based pedestrian detection algorithms on mobile cameras suffer from the lack of a-priori knowledge on the object to be detected. The variability in the shape, pose, color distribution, and behavior affect the robustness of the detection process. A novel vision-based sy...
متن کاملPedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملFusion of Stereo Vision for Pedestrian Recognition using Convolutional Neural Networks
Pedestrian detection is a highly debated issue in the scientific community due to its outstanding importance for a large number of applications, especially in the fields of automotive safety, robotics and surveillance. In spite of the widely varying methods developed in recent years, pedestrian detection is still an open challenge whose accuracy and robustness has to be improved. Therefore, in ...
متن کاملReal Time Vision Based Multi-person Tracking for Mobile Robotics and Intelligent Vehicles
In this paper, we present a real-time vision-based multiperson tracking system working in crowded urban environments. Our approach combines stereo visual odometry estimation, HOG pedestrian detection, and multi-hypothesis tracking-by-detection to a robust tracking framework that runs on a single laptop with a CUDA-enabled graphics card. Through shifting the expensive computations to the GPU and...
متن کامل